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ABSTRACT 37 

Monkeys and other animals appear to share with humans two risk attitudes predicted by prospect 38 

theory: an inverse-S-shaped probability weighting function and a steeper utility curve for losses 39 

than for gains. These findings suggest that such preferences are stable traits with common neural 40 

substrates. We hypothesized instead that animals tailor their preferences to subtle changes in task 41 

contexts, making risk attitudes flexible. Previous studies used a limited number of outcomes, trial 42 

types, and contexts. To gain a broader perspective, we examined two large datasets of male 43 

macaques’ risky choices: one from a task with real (juice) gains and another from a token task 44 

with gains and losses. In contrast to previous findings, monkeys were risk-seeking for both gains 45 

and losses (i.e. lacked a reflection effect) and showed steeper gain than loss curves (loss-46 

seeking). Utility curves for gains were substantially different in the two tasks. Monkeys showed 47 

nearly linear probability weightings in one task and S-shaped ones in the other; neither task 48 

produced a consistent inverse-S-shaped curve. To account for these observations, we developed 49 

and tested various computational models of the processes involved in the construction of reward 50 

value. We found that adaptive differential weighting of prospective gamble outcomes could 51 

partially account for the observed differences in the utility functions across the two experiments 52 

and thus, provide a plausible mechanism underlying flexible risk attitudes. Together, our results 53 

support the idea that risky choices are constructed flexibly at the time of elicitation and place 54 

important constraints on neural models of economic choice. 55 

SIGNIFICANCE STATEMENT 56 

We respond in reliable ways to risk, but are our risk preferences stable traits or ephemeral states? 57 

Using various computational models, we examined two large datasets of macaque risky choices 58 

in two different tasks. We observed several deviations from ‘classic’ risk preferences seen in 59 

humans and monkeys: no reflection effect, loss-seeking as opposed to loss-aversion, and linear 60 

and S-shaped probability distortion, as opposed to inverse-S-shaped. These results challenge the 61 

idea that our risk attitudes are evolved traits shared with the last common ancestor of macaques 62 

and humans; suggesting, instead, that behavioral flexibility is the hallmark of risky choice in 63 

primates. We show how this flexibility can emerge partly as a result of interactions between 64 

attentional and reward systems. 65 
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INTRODUCTION 66 

Humans and other animals live in a complex world in which uncertainty is often unavoidable 67 

(Kacelnik and Bateson, 1997; Pearson et al., 2014; Platt and Huettel, 2008). Understanding the 68 

strategies used to deal with risk –which we call risk attitudes – as well as underlying neural 69 

mechanisms is an important quest for behavioral economics, comparative psychology, foraging 70 

theory, and neuroscience (Kahneman and Tversky, 2000; McCoy and Platt, 2005; O’Neil and 71 

Schultz, 2010; Paglieri et al., 2014; So and Stuphorn, 2010; Trepel et al., 2005). When a strategy 72 

for dealing with risk is beneficial, it is liable to become selected for and canalized; i.e., become 73 

robustly seen across contexts and developmental trajectories. Consistent preferences across many 74 

or all members of a species have been often used to suggest that those preferences are innate and 75 

rely on similar neural substrates (e.g., Heilbronner et al., 2008; Heilbronner, 2017; Mendelson et 76 

al., 2016; De Petrillo et al., 2015; Stevens et al., 2005). 77 

The rhesus macaque is a particularly important model organism in neuroeconomics. Macaques 78 

share many economic biases and preferences with humans, including attitudes towards 79 

counterfactual outcomes, the hot-hand effect, a peak-end bias, framing, cognitive dissonance, 80 

and the experience-description gap (Abe and Lee, 2011; Beran et al., 2014; Blanchard et al., 81 

2014; Blanchard et al., 2015; Egan et al., 2007; Hayden et al, 2009; Heilbronner and Hayden, 82 

2016; Lakshminarayanan et al., 2011). Some recent research suggests that macaques and other 83 

non-human primates share core risk attitudes as characterized by prospect theory (Kahneman and 84 

Tversky, 1979). Most notably, these include loss aversion (overweighting of possible losses 85 

compared to gains; Chen et al., 2006), the reflection effect (simultaneous risk-aversion with 86 

gains and risk-seeking with losses; Lakshmirayanan, et al., 2011), and an inverse-S-shaped 87 

probability weighting function (overweighting and underweighting of small and large 88 

probabilities, respectively; Stauffer et al., 2015). However, whereas humans are reliably risk-89 

averse in many contexts, macaques are generally risk-seeking (Heilbronner and Hayden, 2013; 90 

but see Yamada et al., 2013). The consistency of these results across studies and, with the 91 

exception of risk-seeking, across species, have been used to suggest that such preferences are 92 

stable traits with common neural substrates and to motivate the use of non-human primates for 93 

studying choice under risk and uncertainty (Heilbronner, 2017). 94 
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While risk attitudes are important, cognitive flexibility is important for any organism that will 95 

encounter dynamic environments (Diamond, 2013). Flexible cognition that allows for rapid 96 

adjustment of risky choice strategy to even subtle changes in the environment should be selected 97 

for as well. Cognitive flexibility is not necessarily inconsistent with evolved risk attitudes, but 98 

primates’ remarkable flexibility raises the possibility that ostensibly shared risk attitudes may be 99 

task-dependent. Specifically, if preferences are task-dependent, then comparing two species’ 100 

attitudes in the same task, or one species’ attitudes across two tasks may produce similar 101 

preferences because the computational demands of the task or tasks are similar (e.g., range of 102 

reward probabilities). For this reason, testing risk attitudes across multiple contexts can be 103 

informative. 104 

To obtain a broader view on flexibility of risk attitudes, we examined two large datasets 105 

supplemented with new data: one from a juice-based gambling task in which monkeys chose 106 

between two win/nothing gambles on each trial (Strait et al., 2014; Strait et al., 2015), and one 107 

from a token-based gambling task in which monkeys selected between two mixed (win/loss) 108 

gambles (Azab and Hayden, 2017, 2018; Strait et al., 2016). Our aim was to examine monkeys’ 109 

behavior in light of extant findings and predictions made under prospect theory. By fitting choice 110 

behavior with various models using cross-validation, we found that monkeys were risk-seeking 111 

in both tasks, although their utility curves for gains had different convex shapes. Monkeys were 112 

loss-seeking in the token-gambling task and exhibited a convex utility curve for losses shallower 113 

than the one for gains. Finally, the probability weighting function was S-shape (the inverse of the 114 

previously reported shape) in the juice-gambling task and almost linear in the token-gambling 115 

task.  116 

 117 

MATERIALS AND METHODS 118 

Overview of the experimental procedures. Behavioral data were collected in two separate 119 

experiments in which monkeys selected between two gambles offering juice or tokens. In each 120 

trial of the juice-gambling experiment, monkeys selected one of two options, each offering a 121 

simple gamble for juice or water (Strait et al., 2014; Strait et al., 2015). Options were represented 122 

by a rectangular bar and offered either a gamble or a safe bet (100% probability) for liquid 123 
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reward. Gamble offers were represented by a bar that was divided into two portions 124 

corresponding to the two possible outcomes: no reward and a medium or large reward (Figure 125 

1a).  126 

In each trial of the token-gambling experiment, monkeys selected between two options, each 127 

offering a mixed-gamble for tokens (Strait et al. 2016; Azab and Hayden, 2017, 2018). Visual 128 

display of gambles was similar to the juice-gambling task except six colors were used 129 

corresponding to six possible reward magnitudes in terms of tokens (three gains, two losses, and 130 

zero; Figure 1b). In addition, the probabilities of reward outcome were limited to five values 131 

(0.1, 0.3, 0.5, 0.7, 0.9). Each gamble included at least one positive or zero-outcome, ensuring that 132 

every gamble carried the possibility of a win. This decreased the number of trivial choices 133 

presented to subjects, and maintained motivation. Monkeys were trained to collect six tokens to 134 

receive a large (300 L) liquid reward (see token-gambling task below for more details). 135 

Therefore, each token corresponded to 50 L of reward juice. 136 

In total, three male monkeys (subject B, C, and J) performed 108,272 and 66,500 trials in the 137 

juice and token-gambling tasks, respectively. Monkeys B and J participated in both experiments. 138 

Monkeys B, C, and J performed 70,700, 24,700, and 12,872 trials in the juice-gambling task, 139 

respectively. Monkeys B and J performed 28,700 and 37,800 trials in the token-gambling task, 140 

respectively. Subjects were initially trained on a two-option task (Strait et al., 2014) and then 141 

later also trained with a task that involved single-option accept-reject gambles (Blanchard et al., 142 

2015b). Although subjects were not tested with novel colors in this study, we have extensively 143 

tested macaques’ abilities to learn new associations quickly. This approach to training risk tasks 144 

was explained in detail elsewhere (Hayden, Heilbronner, and Platt, 2010). 145 

Proportional gambling tasks have been used by many labs since 2010 (e.g. O’Neill and Schultz, 146 

2010; So and Stuphorn 2012; Yamada and Glimcher, 2013; Strait and Hayden, 2014; Chen and 147 

Stuphorn, 2015). There is plentiful evidence that monkeys readily understand and correctly 148 

interpret such displays with no special training requirements. The Hayden lab has been 149 

developing methods for training macaques to perform such tasks for over a decade and we have 150 

developed several checks and training strategies to make sure they understand the task. Subjects 151 

were trained in two stages. Our subjects were first trained extensively (for two or more years) on 152 
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a simple gambling task with multiple possible juice (i.e. non-token) reward amounts. In this 153 

stage, they were tested on multiple variations of the gambling task, and performance was 154 

validated through multiple control tests (Hayden and Heilbronner, 2010). Performance was 155 

consistent (including two consistent biases, risk-seeking and win-stay-lose-shift) across single 156 

option (Blanchard et al., 2015b) and two-option (Strait et al., 2014) versions of the task. The 157 

token element of the task was new to our lab, although it has been used in other labs before (e.g. 158 

Seo and Lee, 2009; Seo et al., 2014). Behavior in the token version of the task was overall quite 159 

similar to that in the juice version, indicating that the monkeys readily learned to treat secondary 160 

rewards as reinforcing. However, the strongest evidence for the monkeys’ understanding of the 161 

task comes from their consistent preferences for higher probabilities of large rewards and smaller 162 

probabilities of small rewards. 163 

Juice-gambling task. Two offers were presented on each trial. Each offer was represented by a 164 

rectangle 300 pixels tall and 80 pixels wide (11.35o of visual angle tall and 4.08o of visual angle 165 

wide). Options offered either a gamble or a safe (100% probability) bet for liquid reward. 166 

Gamble offers were defined by two parameters, reward size and probability. Each gamble 167 

rectangle was divided into two portions: one red and the other either blue or green. The size of 168 

the green or blue portions signified the probability of winning a medium (mean 165 L) or large 169 

reward (mean 240 L), respectively. These probabilities were drawn from a uniform distribution 170 

between 0 and 100%. The rest of the bar was colored red; the size of the red portion indicated the 171 

probability of no reward. The safe offer was entirely gray, and always carried a 100% probability 172 

of a small reward (125 L). 173 

On each trial, one offer appeared on the left side of the screen and the other appeared on the 174 

right. Offers were separated from the fixation point by 550 pixels (4.5o of visual angle). The side 175 

of the first and second offer (left and right) was randomized by trial. Each offer appeared for 400 176 

ms and was followed by a 600 ms blank period. Monkeys were free to fixate upon the offers 177 

when they appeared (and in our casual observations almost always did so). After the offers were 178 

presented separately, a central fixation spot appeared and the monkey fixated on it for 100 ms. 179 

Following this, both offers appeared simultaneously and the animal indicated its choice by 180 

shifting gaze to its preferred offer and maintaining fixation on it for 200 ms. Failure to maintain 181 

gaze for 200 ms did not lead to the end of the trial, but instead returned the monkey to a choice 182 
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state; thus monkeys were free to change their mind if they did so within 200 ms (although in our 183 

observations, they seldom did so). Following a successful 200-ms fixation, the gamble was 184 

immediately resolved and reward delivered. Trials that took more than 7 seconds were 185 

considered inattentive trials and were not included in analysis (this removed <1% of trials). 186 

Outcomes that yielded rewards were accompanied by a visual cue: a white circle in the center of 187 

the chosen offer. All trials were followed by an 800-ms inter-trial interval with a blank screen. 188 

Token-gambling task. Monkeys performed a mixed (two-option) gambling task. The task was 189 

similar to one we have used previously (Strait et al. 2014; Strait et al. 2015), albeit with two 190 

major differences: first, monkeys gambled for virtual tokens —rather than liquid —rewards, and, 191 

second, outcomes could be losses as well as wins.  192 

Two offers were presented on each trial. Each offer was represented by a rectangle 300 pixels 193 

tall and 80 pixels wide (11.35° of visual angle tall and 4.08° of visual angle wide). 20% of 194 

options were safe (100% probability of either 0 or 1 token), while the remaining 80% were 195 

gambles. Safe offers were entirely red (0 tokens) or blue (1 token). The size of each portion 196 

indicated the probability of the respective reward. Each gamble rectangle was divided 197 

horizontally into a top and bottom portion, each colored according to the token reward offered. 198 

Gamble offers were thus defined by three parameters: two possible token outcomes, and 199 

probability of the top outcome (the probability of the bottom was strictly determined by the 200 

probability of the top). The probability of the outcome was selected from the following values: 201 

0.1, 0.3, 0.5, 0.7, or 0.9. The token values of the two possible outcomes were selected at random 202 

from the values -2 (black stripe), -1 (gray stripe), 0 (red), 1 (blue), 2 (green), or 3 (purple). The 203 

combinations used are shown in the inset of Figure 1b. Only red (0 token) and blue (1 token) 204 

were used as safe offers. Each gamble included at least one positive or zero-outcome, ensuring 205 

that every gamble carried the possibility of a win. This decreased the number of trivial choices 206 

presented to subjects and maintained motivation. 207 

Six initially unfilled circles arranged horizontally at the bottom of the screen indicated the 208 

number of tokens to be collected before the subject obtained a liquid reward. These circles were 209 

filled appropriately at the end of each trial, according to the outcome of that trial. When six or 210 

more tokens were collected, the tokens were covered with a solid rectangle while a liquid reward 211 
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was delivered. Tokens beyond six did not carry over, nor could number of tokens fall below 212 

zero. 213 

On each trial, one offer appeared on the left side of the screen and the other appeared on the 214 

right. Offers were separated from the fixation point by 550 pixels (4.5° of visual angle). The side 215 

of the first offer (left and right) was randomized by trial. Each offer appeared for 600 ms and was 216 

followed by a 150 ms blank period. Monkeys were free to fixate upon the offers when they 217 

appeared (and in our observations almost always did so). After the offers were presented 218 

separately, a central fixation spot appeared and the monkey fixated on it for 100 ms. Following 219 

this, both offers appeared simultaneously, and the animal indicated its choice by shifting gaze to 220 

its preferred offer and maintaining fixation for 200 ms. Failure to maintain gaze for 200 ms did 221 

not lead to the end of the trial, but instead returned the monkey to a choice state; thus, monkeys 222 

were free to change their mind if they did so within 200 ms (although in our observations, they 223 

seldom did so). A successful 200 ms fixation was followed by a 750 ms delay, after which the 224 

gamble was resolved and a small ‘motivation’ reward (100 L) was delivered, regardless of the 225 

outcome of the gamble, to sustain motivation. This small reward was delivered within a 300 ms 226 

window. If six tokens were collected, a delay of 500 ms was followed by a large liquid reward 227 

(300 L) within a 300 ms window, followed by a random inter-trial interval (ITI) between 500 228 

and 1500 ms. If six tokens were not collected, subjects proceeded immediately to the ITI. 229 

Surgical procedures, eye tracking and reward delivery. All procedures were approved by the 230 

University Committee on Animal Resources at the University of Rochester or by the Institutional 231 

Animal Care and Use Committee at the University of Minnesota, and were designed and 232 

conducted in compliance with the Public Health Service’s Guide for the Care and Use of 233 

Animals. Three male rhesus macaques (Macaca mulatta) served as subjects. A small prosthesis 234 

for holding the head was used. A Cilux recording chamber (Crist Instruments) was placed over 235 

the prefrontal cortex. Animals were habituated to laboratory conditions and then trained to 236 

perform oculomotor tasks for liquid reward. Animals received appropriate analgesics and 237 

antibiotics after all procedures. Throughout both behavioral and physiological recording 238 

sessions, the chamber was kept sterile with regular antibiotic washes and sealed with sterile caps. 239 

All recordings were performed during the animals’ light cycle between 8 a.m. and 5 p.m. 240 
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Eye position was sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR 241 

Research). Stimuli were controlled by a computer running Matlab (Mathworks) with 242 

Psychtoolbox (Brainard 1997) and Eyelink Toolbox (Cornelissen et al. 2002). Visual stimuli 243 

were colored rectangles on a computer monitor placed 57 cm from the animal and centered on its 244 

eyes (Figure 1a-b). A standard solenoid valve controlled the duration of juice delivery. The 245 

relationship between solenoid open time and juice volume was established and confirmed before, 246 

during, and after recording.  247 

Overview of computational models. We first used four base models (EV, EV+PW, EU, and 248 

SU) for the estimation of subjective value. In all these models, the subjective value of each 249 

gamble (say the gamble on the left) was computed as follows: 250 

      (Eq. 1) 251 

where is the subjective value of the left gamble, and are the magnitude (in L) and 252 

probability associated with the left gamble’s larger magnitude outcome, is the magnitude of 253 

the other left gamble outcome  which is equal to zero in the juice-gambling task,  254 

is the utility function, and  is the probability weighting function (PW). The four models 255 

differed in the form of their utility and probability weighting functions. The EV model included 256 

linear utility and probability weighting functions. The EU model included only a nonlinear utility 257 

function whereas the EV+PW included only a nonlinear probability weighting function. Finally, 258 

the SU included both nonlinear utility and probability weighting functions (see base models 259 

below for more details). 260 

The estimated subjective values of the two options presented in each trial were then used to 261 

compute the probability of selecting between the two options based on a logistic function 262 

         (Eq. 2) 263 

where is the probability of choosing the left option,  measures a response bias toward the 264 

left option to capture any location bias,  measures a response bias toward the first offer that 265 

appeared on the screen (order bias) and was only significant in the token-gambling task 266 

( ( ) is 1 if the first offer appeared on the left (right) side), and  is a parameter that 267 
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measures the level of stochasticity in decision processes. 268 

We also extended our base models to include two types of differential weighting mechanisms 269 

(see Models with differential weighting mechanism below for more details). First, we considered 270 

alternative ‘within-option’ differential weighting mechanisms by which the gamble outcome 271 

with a larger reward magnitude, reward probability, or expected value could influence the overall 272 

value more than the alternative outcome. This was done to investigate how magnitudes and 273 

probabilities of the two possible gamble outcomes can influence the weight of each gamble 274 

outcome on the overall gamble value. These models were only used for the token-gambling task 275 

since gambles in the juice-gambling task only had one non-zero outcome. Second, we considered 276 

the possibility that when comparing two gambles, the value of the better outcome of each gamble 277 

(in terms of magnitude, probability, or EV) could influence their overall value relative to the 278 

other gamble (‘cross-option’ differential weighting). This was done to investigate how non-zero 279 

(or the better) outcomes of the gambles on each trial modulate the value of these gamble in the 280 

juice-gambling (respectively, token-gambling) task.  281 

Base models. In the expected value (EV) model, actual probabilities and a linear utility function 282 

were used to estimate the subjective value of each gamble. However, this model also includes 283 

different slopes for gains and losses as follows: 284 

         (Eq. 3) 285 

where  and  are slopes for the gain and loss domains, respectively. We normalized the juice 286 

reward magnitude by 100 L in order to limit utility to small numbers. 287 

In the expected utility (EU) model we considered a nonlinear utility function and a loss-aversion 288 

coefficient as follows: 289 

                (Eq. 4) 290 

where  is the subjective utility,  is the loss-aversion coefficient, and  and  are the 291 

exponents of the power law function and determine risk-aversion for the gain and loss domains, 292 

respectively;  > 1 indicates risk-seeking,  < 1 indicates risk-aversion, and  = 1 indicates risk-293 
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neutrality. 294 

In the EV+PW model, we considered a linear utility function and nonlinear probability weighting 295 

function (PW). The PW was computed using a 1-parameter Prelec function as follows: 296 

       (Eq. 5) 297 

where  is the PW, and  is a parameter that determines probability distortion.  298 

Finally, in the SU model, we used both nonlinear utility and nonlinear probability weighting 299 

functions to estimate the subjective value of each gamble. 300 

Models with differential weighting mechanisms. We extended our base models to include two 301 

types of differential weighting mechanisms. First, we considered alternative differential 302 

weighting mechanisms by which the gamble outcome with a larger reward magnitude, reward 303 

probability, or expected value could influence the overall value more than the alternative 304 

outcome (‘within-option’ differential weighting; Figure 2a-c). Second, we considered the 305 

possibility that when comparing two gambles, the value of the better outcome of each gamble (in 306 

terms of magnitude, probability, or EV) could influence their overall value relative to the other 307 

gamble (‘cross-option’ differential weighting; Figure 2d-i). 308 

We constructed three within-option differential weighting models (differential weighting by 309 

magnitude, differential weighting by probability, and differential weighting by EV; Figure 2a-c) 310 

to investigate how magnitudes and probabilities of the two possible gamble outcomes can 311 

influence the weight of each gamble outcome on the overall gamble value. These models were 312 

only used for the token-gambling task since gambles in the juice-gambling task only had one 313 

non-zero outcome.  314 

In the model with within-option differential weighting by magnitude (diff. weight by mag.), the 315 

subjective value of each gamble (say for the left gamble) was computed as follows: 316 

     (Eq. 6) 317 

where (differential-weighting factor) determines the strength of differential weighting by 318 

magnitudes, and  and  are the magnitude and probability associated with the left gamble’s 319 
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larger magnitude outcome, respectively, and  is the magnitude of the other left gamble 320 

outcome .  321 

In the model with within-option differential weighting by probability (diff. weight by prob.), the 322 

subjective value was computed as follows: 323 

       (Eq. 7) 324 

where  determines the strength of differential weighting by probability,  ( ) is the 325 

magnitude associated with the left gamble’s larger (respectively, smaller) probability outcome 326 

( ).  327 

Finally, in the model with within-option differential weighting by expected value (diff. weight by 328 

EV), the subjective value was computed as follows: 329 

       (Eq. 8) 330 

where  determines the strength of differential weighting by expected value,  and  are 331 

the magnitude and probability associated with the left gamble’s outcome with a larger expected 332 

value, respectively, and  is the magnitude associated with the left gamble’s outcome with a 333 

smaller expected value ( ). 334 

We also constructed three cross-option differential weighting models (cross-opt differential 335 

weighting by magnitude, cross-opt differential weighting by probability, and cross-opt 336 

differential weighting by EV) to investigate how non-zero (or the better) outcomes of the 337 

gambles on each trial modulate the value of these gamble in the juice-gambling (respectively, 338 

token-gambling) task. 339 

In all the models with cross-option differential weighting, the probability of selecting between 340 

the gambles was computed as follows (if the left gamble was assigned with the larger weight): 341 

       (Eq. 9) 342 

where  determines the strength of differential weighting between the two non-zero or better 343 

outcomes of the two alternative gambles based on one of the three alternative mechanisms: 344 
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differential weighting by magnitude; differential weighting by probability; and differential 345 

weighting by EV (Figure 2d-i). 346 

In the models with cross-option differential weighting by magnitude (Figure 2g),  was 347 

multiplied by the value of the gamble with a larger magnitude outcome; for example the left 348 

gamble, if , where Mi denotes the larger magnitude outcome of each gamble. In the 349 

models with cross-option differential weighting by probability (Figure 2h),  was multiplied 350 

by the value of the gamble with a larger probability outcome for which the magnitude was non-351 

zero; for example the left gamble, if , where Pi denotes the larger probability outcome of 352 

each gamble. Finally, in the models with cross-option differential weighting by expected value 353 

(Figure 2i),  was multiplied by the value of the gamble with a larger expected value 354 

outcome; for example the left gamble, if , when  and 355 

 are the EV of the larger EV outcomes of the two gambles.  356 

Fitting procedure and data analyses. To examine how monkeys constructed subjective value 357 

for risky options, we used various models to fit choice behavior during each gambling task; the 358 

best model revealed the most plausible mechanism for the construction of subjective value for a 359 

given monkey/task. Models were fitted to experimental data by minimizing the negative log 360 

likelihood of the predicted choice probability given different model parameters using the 361 

fminsearch function in MATLAB (Mathworks). There are two main issues when comparing the 362 

goodness-of-fit between models with different number of parameters: more complex models 363 

could explain data better by virtue of having a greater number of parameters, models with more 364 

parameters could over-fit the data such that the fitting is not generalizable to similar datasets. For 365 

these reasons, we fit choice behavior with different models based on a 5-fold cross-validation 366 

method, using parameters estimated from 80% of the data for a given monkey/task to predict 367 

choices on the remaining 20%. Importantly, cross-validation automatically deals with different 368 

numbers of model parameters because redundant parameters result in over-fitting and thus do not 369 

add any explanatory power. Moreover, it has been shown that in many cases, the cross-validation 370 

method provides an approximation to the Akaike information criterion (AIC) whereas the AIC 371 

does not address the over-fitting issue. The cross-validation was done 50 times separately for 372 

data from each monkey in a given task.  373 
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In addition, we also fit choice behavior from each session of the experiment individually in order 374 

to capture the diversity of risk attitudes on different days of the experiment. For this analysis, we 375 

used interquartile range rule to remove outlier sessions in terms of the estimated parameters. 376 

More specifically, we only included sessions that did not yield an outlier for any of the fitting 377 

parameters. This was done to ensure a reliable estimate for all the parameters in a given session. 378 

In the juice-gambling task, the exclusion criterion resulted in removal of 2% and 11% of sessions 379 

from the lower and upper outlier bounds, respectively. In the token-gambling task, this exclusion 380 

criterion resulted in removal of 4% and 12% of sessions from the lower and upper outlier 381 

bounds, respectively. Importantly, we obtained qualitatively similar results for session-by-382 

session analyses even with the inclusion of outlier sessions. 383 

To test whether our fitting procedure is able to distinguish between alternative models and 384 

identify the correct model and to accurately estimate model parameters, we simulated the 385 

aforementioned sixteen models over a range of parameters estimated from monkeys’ choice 386 

behavior in the two experiments. More specifically, we generated choice data for the juice-387 

gambling task using the exponent of the utility function ( ) ranging from 1 to 4, the probability 388 

distortion parameter ( ) ranging from 0.8 to 2, the differential-weighting factor (DW) ranging 389 

from 0.55 to 0.65 and the stochasticity in choice ( ) ranging from 0.5 to 10. In the token-390 

gambling task, we generated choice data by adopting the following range for model parameters: 391 

[1, 2] for the exponent of the utility function between ( ), [0.4, 1.2] for the loss-aversion 392 

coefficient ( ), [0.8, 1.2] for the probability distortion parameter ( ), [0.55, 0.65] for the 393 

differential weighting (DW), and [0.4, 1] for stochasticity in choice ( ). We then fit the simulated 394 

data with all the models to compute the goodness-of-fit (in terms of AIC) and to estimate model 395 

parameters. Because model parameters could take on very different values, we computed the 396 

error in estimation of model parameters using the relative value of each estimated parameter to 397 

its actual value. The average goodness-of-fit and estimation error were calculated by averaging 398 

the corresponding values over all fits based on all sets of parameters. Moreover, in order to 399 

account for the overall difficulty of fitting data generated with certain models, we rescaled AIC 400 

values across all models used to fit a given set of simulated data. This rescaling was done by first 401 

subtracting the minimum AIC value obtained by fitting a given set of data and then dividing the 402 
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outcome by the difference between the maximum and minimum values of AIC for that set of 403

data.  404

To test correlation between model parameters, we used two methods: the Hessian matrix and 405

session-by-session values of fitting parameters. In the first method, we numerically estimated 406

correlations between model parameters using the Hessian matrix for the base SU model and the 407

SU model with differential weighting at parameter values for which we obtained of best fit. The 408

relationship between the matrix of correlation between model parameters and the Hessian matrix 409

builds on the theorem that because the maximum likelihood estimator is asymptotically normal, 410

the distribution of the maximum likelihood estimator ( ) can be approximated by a multivariate 411

normal distribution with a certain mean ( ) and a covariance matrix 412

( ), where n is the number of model parameters. This covariance 413

matrix can be estimated by , where  is the matrix of 414

the second-order partial derivatives of the log-likelihood function, or the Hessian matrix. As a 415

result, the matrix of correlation between model parameters can be calculated from the inverse of 416

the Hessian matrix. To estimate the Hessian matrix, we first computed the derivatives of the log 417

likelihood with respect to model parameters to form the Jacobian matrix. Next, we calculated the 418

derivative of the Jacobian matrix to compute the Hessian matrix of the cost function for fitting.  419

In the second method, we directly calculated the correlation between model parameters based on 420

the estimated parameters across all sessions using the base SU model and the SU model with 421

differential weighting. Using session-by-session fitting parameters, we also calculated the 422

correlation between model parameters of both models. The two methods for calculating 423

correlation between model parameters yield compatible results (see Results).  424

We also examined the likelihood surface of the model in order to calculate the error associated 425

with the estimated parameters. We calculated variability in the estimate of negative log-426

likelihood function (by computing the standard deviation of this function, std(-LL)) at the global 427

minimum across many instances of cross-validation. We then calculated the order of magnitude 428

(scale) of the error associated with estimated parameters using the eigenvector associated with 429

the smallest eigenvalue of the Hessian matrix (as a measure of the direction with the minimum 430

slope of log-likelihood surface) as follows: 431
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       (Eq. 10) 432 

where  is the smallest eigenvalue and  is the corresponding eigenvector. 433 

Finally, to quantify changes in the sensitivity to reward information as a function of the number 434 

of collected tokens (Figure 5), we fit the psychometric function using a sigmoid function and 435 

estimates indifference point ( ) and stochasticity in choice ( ): 436 

      (Eq. 11) 437 

where p(left) is the probability of choosing the option on left, and EVL and EVR are the expected 438 

value of the left and right options, respectively. 439 

Statistical Analysis. MATLAB (Mathworks) was used for all statistical analysis. Statistical 440 

comparisons of extracted model parameters within experiments were done using two-sided sign-441 

test. Statistical comparisons of extracted model parameters between experiments were done 442 

using two-sided rank-sum test. Results were considered significant at p < 0.05. The reported 443 

effect sizes are Cohen’s d values. All extracted model parameters are expressed as median±IQR. 444 

The statistics for changes in the sensitivity of psychometric function as a function of number of 445 

collected tokens were obtained using linear regression.  446 

 447 

RESULTS 448 

We used various computational models to analyze monkeys’ choice behavior from two separate 449 

experiments in which subjects chose between two options (gambles or safe options) offering 450 

either juice (juice-gambling task) or token (token-gambling task) rewards (Figure 1). The juice-451 

gambling task involved options with the possibility of one of three reward sizes or no reward, 452 

whereas options in the token-gambling task involved a mix of gain, loss, or no reward 453 

possibilities (see Materials and Methods). 454 

Monkeys exhibit risk-seeking and loss-seeking.  We first examined whether the animals 455 

appropriately integrated information about reward magnitude and probability to select between 456 
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gambles. To do so, we computed the probability of choosing the left gamble as a function of the 457 

difference between the expected values (i.e. reward probability times magnitude) of the left and 458 

right gambles (Figure 3c-d). This analysis showed that all monkeys consistently selected the 459 

gamble with higher expected value (81%, 84% and 85% for monkeys B, C and J in the juice-460 

gambling task and 79% and 74% for monkeys B and J in the token-gambling task; binomial test, 461 

p = 10-32). Moreover, psychometric functions plotted in Figure 3c-d provide strong evidence that 462 

all monkeys considered both length (probability) and color (magnitude) of gambles for making 463 

decisions. 464 

To measure overall preference for risk and loss, we next examined choices between pairs of a 465 

safe option and a risky gamble with equal expected value, or between pairs of risky gambles with 466 

equal expected values. We found that in both experiments, monkeys consistently selected the 467 

offer with the smaller reward probability and larger reward magnitude (i.e., the more risky 468 

option) over the one with the larger reward probability and smaller reward magnitude, indicating 469 

significant risk-seeking behavior (Figure 3c-d insets). Moreover, in the token-gambling task 470 

with gains and losses, monkeys consistently selected the 50/50 gambles with equal amounts of 471 

gains and losses over the sure option that did not deliver reward. This indicates that monkeys 472 

preferred to accept, rather than reject, gambles with loss and zero expected value, signifying 473 

loss-seeking behavior (Figure 3d inset).   474 

To better demonstrate that monkeys understood the task and incorporated information about both 475 

reward probability and magnitude, we calculated choice probability separately for each set of 476 

gambles with similar reward magnitudes as a function of the probability of reward for the larger 477 

magnitude outcomes of the two gambles, or the only gamble when the competing choice option 478 

was a safe one (Figure 4). This analysis showed that the probability of choosing a gamble 479 

increased as the probability of reward for its larger magnitude outcome increased, indicating that 480 

monkeys did incorporate the length of a given colored portion (i.e. reward probability) in their 481 

choices. 482 

Finally, we examined whether monkeys understood the structure of the token-gambling task and 483 

were sensitive to the information about collected tokens that was presented at the bottom of the 484 

screen. We reasoned that if monkeys understood this information, then they would necessarily 485 
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show systematic changes in behavior as a function of token number; for example, they would 486 

exhibit more motivation to perform the task as the number of tokens grows and the probability of 487 

winning a jackpot reward immediately increases. To test this, we calculated psychometric 488 

functions separately for different numbers of collected tokens at the beginning of each trial 489 

(Figure 5). The psychometric function measures the preference between each pair of gambles as 490 

a function of the difference in expected values of gambles, and thus reflects the sensitivity of the 491 

animal to the presented information (Eq. 11). We found that both monkeys became less 492 

stochastic (smaller  corresponding to a steeper psychometric function) in their decisions, or 493 

equivalently more sensitive to the presented information, as they gathered more tokens (p = 0.04 494 

for Monkey B and p = 0.0003 for Monkey J; two-sided t-test). This result reflects higher level of 495 

motivation in performing the task and supports the premise that monkeys can use the token 496 

information as a symbolic scoreboard of future rewards. 497 

Monkeys exhibit convex utility curves for both gains and losses and a task-dependent S-498 

shaped probability weighting.  Our subjects’ overall risk-seeking and loss-seeking behavior 499 

suggests utility and probability weighting functions different from those predicted by prospect 500 

theory. More specifically, there are three main characteristics that describe the core risk attitudes 501 

of humans in prospect theory (Kahneman and Tversky, 1979). First, the utility curve is concave 502 

for gains but convex for losses, indicating risk-aversion and risk-seeking behavior for gains and 503 

losses, respectively (Figure 3a, blue curve). The opposing risk attitude for gains and losses is 504 

known as the reflection effect. Second, the slope of the utility curve for losses is steeper than the 505 

one for gains. This pattern produces loss-aversion, the tendency for losses to have a more 506 

negative impact on subjective value than equivalent gains. Third, the probability weighting 507 

function has an inverse-S-shape, resulting in overweighting of the value of options with small 508 

reward probability and underweighting of options with large reward probability (Figure 3b, blue 509 

curve). To directly assess risk attitudes in monkeys based on prospect theory, we first used four 510 

base models to fit choice behavior and estimated utility and probability weighting functions in 511 

each of the two experiments (see Materials and Methods). The behavior we observe in our 512 

subjects better fits the red curves in Figures 3a and 3b: where a convex curve for gains as well 513 

as losses explains risk-seeking behavior in both domains and the probability weighting function 514 

(where significant) is S-shaped; suggesting that subjects underweight options with a low 515 
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probability and overweight options with a high probability. We examine these behavioral 516 

patterns in detail below.  517 

Fitting choices based on cross-validation showed that the SU model (the model with nonlinear 518 

utility and probability weighting functions) provided the best fit in the juice-gambling task 519 

(Figure 6a). Session-by-session estimates of the utility functions based on this model revealed a 520 

convex utility function (Figure 6b; Table 1). This convexity was reflected in the median of the 521 

exponent of the utility curve ( ; see Eq. 4 in Materials and Methods) being larger than 1 522 

(median±IQR = 2.95±0.94, two-sided sign-test; p = 6.3 10-28, d = 3.15, N = 146). Monkeys also 523 

exhibited a prominent S-shaped probability weighting function (Figure 6c) reflected in the 524 

distortion parameter ( ; see Eq. 5 in Materials and Methods) being larger than 1 (median±IQR = 525 

1.57±0.76, two-sided sign-test; p = 3.5 10-14, d = 1.13, N = 146). Importantly, these results were 526 

not model-specific since fitting based on the models with either a nonlinear utility function (EU) 527 

or the probability weighting function (EV+PW) also produced convex utility curves (  528 

median±IQR = 2.57±0.57, two-sided sign-test; p = 2.3 10-28, d = 3.59, N = 146; Figure 6d) or a 529 

prominent S-shaped probability weighting (  median±IQR = 2.50 ±1.68, two-sided sign-test; p = 530 

3.7 10-14, d = 0.87, N = 146; Figure 6-1a), respectively.  531 

We next examined choice behavior during the token-gambling task. Fitting choice based on 532 

cross-validation showed that the EU and SU models provided the best fit for choice during this 533 

task (Figure 6e). Fits for the two models were nearly equal suggesting that inclusion of the 534 

probability weighting function did not improve the fit and thus the absence of any probability 535 

distortion. Session-by-session estimates of the utility functions based on the SU model revealed 536 

that monkeys adopted a convex utility function for both gains and losses (Figure 6f; Table 2). 537 

This convexity was reflected in the median of the exponent of the gain utility curve being larger 538 

than 1 (median±IQR = 1.58±0.51, two-sided sign-test; p = 2.7 10-24, d = 1.59, N = 140; Figure 539 

6f lower inset), and the median of the exponent of the loss utility curve ( ; see Eq. 4 in 540 

Materials and Methods) being smaller than 1 (median±IQR = 0.64±1.02, two-sided sign-test; p = 541 

1.0 10-4, d = 0.25, N = 140). In addition, monkeys were loss-seeking: the loss-aversion 542 

coefficient ( ; see Eq. 4 in Materials and Methods) was significantly smaller than 1 543 

(median±IQR = 0.46±0.84, p = 3.3 10-9, d = 0.56, N = 140; Figure 6f upper inset). Finally, 544 

monkeys exhibited a slightly S-shaped probability weighting function (  median±IQR = 545 
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1.14±0.37, two-sided sign-test; p = 5.7 10-5, d = 0.57, N = 140; Figure 6g). This result is 546 

consistent with the finding that the probability weighting function did not improve the fit in the 547 

token-gambling task (Figure 6e).  548 

As with the juice-gambling task, these results were not model-specific: fitting based on the 549 

models with either a nonlinear utility function (EU) or the probability weighting function 550 

(EV+PW) produced a qualitatively similar pattern of risk preference for the token-gambling task. 551 

More specifically, parameter estimates of the utility function based on the EU model showed 552 

convex utility curves for both gains and losses that were steeper for the gain than the loss domain 553 

(Figure 6h; Table 2). This was reflected in: the median of  being larger than 1 (median±IQR 554 

= 1.49±0.49, two-sided sign-test; p = 1.2 10-23, d = 1.50, N = 140; Figure 6h lower inset); the 555 

median of  being smaller than 1 (median±IQR = 0.55±1.05, two-sided sign-test; p = 4.5 10-4, 556 

d = 0.34, N = 140); and the median of  being significantly smaller than 1 (median±QR = 557 

0.46±0.84, two-sided sign-test; p = 3.4 10-8, d = 0.69, N = 140; Figure 6h upper inset). Finally, 558 

parameter estimates of the probability weighting function based on the EV+PW model revealed 559 

an S-shaped weighting function (  median±IQR = 1.48±0.58, two-sided sign-test; p = 3.2 10-16, 560 

d = 1.16, N = 140; Figure 6-1b). Together, these results show that the observed shape of the 561 

estimated utility and probability weighting functions were general and not model-specific. 562 

We also considered the possibility that the observed loss-seeking behavior was caused by 563 

monkeys not considering losing a token as a real loss since in each trial, they were provided with 564 

a small ‘motivation’ reward regardless of the outcome of the gamble (see Materials and 565 

Methods). To test for this possibility, we fit choice behavior with four base models similar to 566 

what used above with the difference that a loss of two and one tokens were considered as zero 567 

loss or a gain of one token, respectively. The goodness-of-fit based on these models did not reach 568 

to those of the models in which losing any token was considered as loss (Figure 7). This result 569 

strongly suggests that monkeys treated losing tokens as a genuine loss and thus the observed 570 

loss-seeking was not due to a shift in the reference point.  571 

Finally, we compared the estimated utility and probability functions in the two experiments. The 572 

utility function for gains was significantly more convex in the juice- than token-gambling task 573 

(comparison of  values, two-sided Wilcoxon rank-sum test; p = 7.4 10-37, d = 2.75, N = 284). 574 
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Crucially, this difference was significant even for each of the two monkeys who performed both 575 

experiments (Monkey B: p = 1.3 10-21, d = 3.81, N = 140, Monkey C: p = 1.0 10-8, d = 2.24, N 576 

= 93; Figure 8a, c). The probability weighting function was more distorted in the juice- than 577 

token-gambling task (comparison of  values, two-sided Wilcoxon rank-sum test; two-sided 578 

Wilcoxon rank-sum test; p = 3.5 10-10, d = 0.96, N = 284). This pattern held true for each of the 579 

two monkeys who performed both experiments as well (Monkey B: p = 4.9 10-6, d = 1.04, N = 580 

140, Monkey C: p = 0.02, d = 0.63, N = 93; Figure 8b, d).  581 

These findings show that risk attitudes, especially in terms of the curvature of the utility 582 

function, are flexible and task dependent. To further explore potential mechanisms underlying 583 

this flexibility, we next examined additional components involved in the construction of 584 

subjective value that could account for some of the observed differences in risk attitudes during 585 

the two tasks.   586 

Differential weighting can partially account for the difference in utility functions across 587 

experiments. To explore additional factors that could influence the construction of subjective 588 

value and choice, we considered two sets of mechanisms for weighting of possible outcomes. 589 

First, we hypothesized that the two gamble outcomes could be weighted differently before they 590 

are combined to form the overall subjective value. In other words, the two possible outcomes of 591 

a given gamble compete to influence the overall gamble value. To test this hypothesis, we 592 

considered three possible ‘within-option’ differential weighting mechanisms by which the 593 

gamble outcome with a larger reward magnitude, reward probability, or expected value could 594 

influence the overall value more so than the alternative outcome (see Materials and Methods and 595 

Figure 2a-c for more details). Second, we hypothesized that when comparing two gambles, the 596 

value of the better outcome of each gamble could influence its overall value relative to the other 597 

gamble. To test this hypothesis, we considered alternative ‘cross-option’ differential weighting 598 

mechanisms based on the magnitude, probability, or expected value of the better outcome in each 599 

gamble (see Materials and Methods and Figure 2d-i for more details). We used all these models 600 

to fit choice behavior in the two experiments. 601 

We found that the SU model with cross-option differential weighting (DW) based on reward 602 

magnitude provided the best fit in the juice-gambling task (Figure 9a). In order to study the 603 
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contribution of DW to flexible risk attitudes, we next compared the session-by-session estimates 604 

of the ‘differential-weighting factor’ (see Materials and Methods) and risk preference parameters 605 

based on the SU model with and without DW. This analysis revealed a strong differential 606 

weighting of the two gambles based on reward magnitude of the better outcome (DW factor 607 

median±IQR = 0.63±0.18, p = 1.1 10-26, d = 1.30, N = 146; Figure 9d) corresponding to ~102% 608 

larger weight for the value of the gamble with the larger magnitude relative to the other gamble. 609 

More importantly, the estimated utility function was less steep in the SU model with differential 610 

weighting than in the SU model without differential weighting (  median±IQR = 1.74±1.00 and 611 

2.95±0.94 for the model with and without DW, respectively; p = 1.1 10-15, d = 1.18, N = 146; 612 

Figure 9b; Figure 10a). This finding suggests that differential weighting accounts for some 613 

portion of behavior that, unless modeled explicitly, results in an overestimation of the convexity 614 

of the subjective utility function. However, there was no difference between probability 615 

distortion estimates based on the model with and without DW (  median±IQR = 1.55±0.78 and 616 

1.57±0.76 for the model with and without DW, respectively; two-sided sign-test, p = 0.12, d = 617 

0.17, N = 146; Figure 9c; Figure 10b), suggesting that differential weighting may not influence 618 

estimates of this function, at least not in this task. 619 

In contrast to the juice-gambling task, models with within-option DW provided better fit 620 

compared to models with cross-option DW in the token-gambling task (compare bottom and top 621 

four bars in Figure 9e). Overall, the EU and SU models with within-option DW based on reward 622 

magnitude provided the best fit among all models with DW. The improvement of fit based on 623 

theses models relative to the best models without DW (base EU and SU models) was minimal 624 

(Figure 6e). These results indicate that differential weighting did not strongly influence choice 625 

behavior in the token-gambling task. Nevertheless, the session-by-session estimate of the DW 626 

factor in the SU with DW model revealed a significant effect of DW on valuation; DW factors 627 

were significantly larger than 0.5 (median±IQR = 0.57±0.22; p = 2.3 10-7, d = 0.67, N = 140; 628 

Figure 9h) corresponding to ~33% larger weight for the value of the outcome with the larger 629 

magnitude relative to the outcome with the smaller reward magnitude.  630 

Moreover, the utility functions for both gains and losses were less steep in the SU model with 631 

DW than in the SU model without DW (Figure 9f; Figure 10c; Table 2). The estimated 632 

exponents of the utility function for gains ( ) were significantly smaller after considering 633 
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differential weighting (median±IQR = 1.43±0.46 and 1.58±0.51 for the model with and without 634 

DW, respectively; p = 1.3 10-4, d = 0.52, N = 140). Similarly, the estimated exponents of the 635 

utility function for losses ( ) were significantly smaller after considering differential weighting 636 

(median±IQR = 0.48±0.73 and 0.64±1.02 for the model with and without DW, respectively; p = 637 

0.048, d = 0.17, N = 140). The estimated loss-aversion coefficients, however, were larger in the 638 

model with DW (  median±IQR = 0.58±1.51 and 0.46±0.84 for the model with and without DW, 639 

respectively; p = 9.1 10-6, d = 0.23, N = 140) corresponding to more loss-seeking in this model. 640 

Finally, the probability weighting function was slightly less distorted in the model with 641 

differential weighting (  median±IQR = 1.11±0.40 and 1.14±0.37 for the model with and 642 

without DW, respectively; p = 9.1 10-6, d = 0.32, N = 140; Figure 9g; Figure 10d). These 643 

results demonstrate that within-option differential weighting can account for some of the 644 

observed convexity of the utility functions in the token-gambling task. 645 

To demonstrate that our fitting procedure can actually distinguish between alternative models 646 

and identify the correct model and to accurately estimate model parameters, we generated choice 647 

data using all the presented models and over a wide range of model parameters, and subsequently 648 

fit the simulated data with all the models (see Materials and Methods). We found that data 649 

generated with certain models were easier to fit than other models. For example, models without 650 

DW were in general easier to fit, and within a given family of models, data generated with 651 

models with non-linear utility functions (EU and SU) were easier to fit (Figure 2-1a,c). 652 

Nevertheless, the same model used to generate a given set of data provided the best overall fit 653 

(Figure 2-1b,d). We also computed the relative estimation error (i.e. difference between the 654 

estimated and actual parameters after normalizing each estimated parameter by its actual value; 655 

see Materials and Methods) and found that fitting based on the model used to generate a given 656 

set of data provided an unbiased estimate of model parameters (Figure 2-2a,c). Moreover, we 657 

found the minimum value of the average absolute estimation error (as a more robust measure of 658 

variance in estimation error) for the same model used to generate a given set of data (Figure 2-659 

2b,d). Together, these results demonstrate that our fitting method is able to correctly identify the 660 

model used to generate a given set of data and thus can distinguish between the alternative 661 

models. In addition, our fitting yields unbiased estimates of model parameters with relatively 662 

small error.  663 
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Altogether, these results illustrate that differential weighting could account for part of the 664 

observed convexity of the utility function in both experiments. Interestingly, the amount of 665 

change in the convexity after including DW was larger in the juice-gambling task than in the 666 

token-gambling task (juice task: Δ  median±IQR = -1.09±1.52; token task: Δ  median±IQR = 667 

-0.09±0.20; two-sided Wilcoxon rank-sum test, p = 1.8 10-21, d = 1.55, N = 284), making the 668 

utility functions more similar after the inclusion of DW (Figure 11a). We did not observe similar 669 

changes in the estimates of probability distortion parameters after the inclusion of DW (juice 670 

task: Δ  median±IQR = 0.02±0.13; token task: Δ  median±IQR = -0.03±0.10; two-sided 671 

Wilcoxon rank-sum test, p = 0.27, d = 0.45, N = 284; Figure 11b). These results demonstrate 672 

that the differential weighting mechanisms can partially account for the observed difference in 673 

utility function across the two tasks. Moreover, they explain how such additional mechanisms 674 

enable flexible risk attitude according to the task. 675 

We also calculated the correlations between the estimated parameters of the best models (the SU 676 

models with and without DW) in order to test whether some of the observed effects of 677 

differential weighting could be captured by changes in other parameters. We calculated these 678 

correlations using two different methods: the Hessian matrix and session-by-session values of 679 

fitting parameters (see Materials and Methods). These analyses revealed that in both models the 680 

exponent of utility function power law ( ) and the stochasticity in choice ( ) were significantly 681 

correlated with each other, indicating that a larger amplification of reward magnitude by the 682 

utility function can be offset with a larger value for the stochasticity in choice (Figure 11-1 and 683 

Figure 11-2). This correlation can be an evidence for normalization in value construction. 684 

Additionally, we found that in the SU model with DW, the differential-weighting factor ( ) 685 

was significantly correlated with  and . Moreover, in the juice-gambling task, the DW factor 686 

was significantly correlated with  and to a lower extent with . In the token-gambling task, we 687 

also found a correlation between DW and , and between DW and loss-aversion coefficient ( ). 688 

It is worth noting that the observed correlations should not be concerning for the interpretation of 689 

best fitting models because we used cross-validation for identifying those models. Cross-690 

validation would reveal if any of the fitting parameters in our best models were redundant. 691 

One possible concern could be that because of the correlation between  and , some of the 692 

observed change in  (i.e. the convexity of the utility function) between the two tasks could be 693 
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caused by changes in  and not differential weighting. To rule out such possibility, we defined a 694 

single quantity for measuring the effect of reward magnitude on choice behavior equal to  695 

(and  for losses), where x is one of the possible reward magnitudes. The value of  696 

determines the influence of reward magnitudes on choice in a given model considering the 697 

stochasticity in choice in that model. We then computed the distributions of  for the best 698 

models with and without DW and found that  (and ) values were significantly 699 

larger in the SU with DW model (two-sided sign-test; juice task: p = 7.4 10-24, 4.9 10-23, 700 

4.9 10-23; d = 1.98, 2.28, 2.13, for small, medium, and large rewards, respectively; N = 146; 701 

token task: p = 5.7 10-26, 1.1 10-22, 5.7 10-26, 5.7 10-26, 4.0 10-25; d = 0.23, 0.41, 1.74, 1.58, 702 

1.33; for -1, -2, 1, 2, and 3 tokens, respectively; N = 140; Figure 12). These results show that 703 

despite correlations between DW and  and , differential weighting results in enhanced value 704 

of reward magnitude relative to the stochasticity in choice. This indicates that differential 705 

weighting of possible outcomes based on the magnitude increases the overall effect of magnitude 706 

on choice and thus can capture some of risk-seeking behavior that are otherwise attributed to the 707 

convexity of the utility function. 708 

 Finally, we also examined the likelihood surface of the best models in order to calculate the 709 

error associated with the estimated parameters. Overall, we found small errors in the estimation 710 

of model parameters, expect for a few parameters that were correlated with other parameters:  711 

in the SU with DW model in the juice-gambling task,  in the SU model in the token-gambling 712 

task, and  and  in the SU with DW model in the token-gambling task (Figure 11-3). 713 

Importantly, estimation errors in these parameters do not affect our results.  714 

 715 

DISCUSSION 716 

Flexible risk attitudes in monkeys. We investigated risky choices in monkeys performing two 717 

different gambling tasks: a token-gambling task (with both gains and losses) and a juice-718 

gambling task (with gains only). Fitting choice behavior with alternative models revealed convex 719 

utility curves for both the gain and loss domains, a pattern that is inconsistent with the reflection 720 

effect. Macaques thus deviated from humans and capuchins (Lakshminarayanan et al., 2008). 721 

Moreover, our monkeys showed a steeper utility curve for gains than for losses, making them 722 
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loss-seeking; a deviation from the loss-aversion observed in humans and capuchins (Chen et al., 723 

2006). Finally, monkeys showed a prominent S-shaped probability weighting function in the 724 

juice-gambling task and nearly linear (albeit slightly S-shaped) probability weighting in the 725 

token-gambling task. These patterns deviate from each other, from previous human studies, and 726 

from rhesus macaques in two other studies (Stauffer et al., 2015; Yamada et al., 2013).   727 

Taken together, our results challenge the idea that rhesus monkeys have a fixed and stable set of 728 

risk attitudes that are consistent across tasks. This variety in responses to risk challenges the idea 729 

that these risk attitudes have not changed since the time of our most recent ancestor. Instead, our 730 

results support an alternative view in which natural selection in the primate order has led to 731 

robust cognitive flexibility. This flexibility, presumably, would prevent us from having risk 732 

attitudes that are so ingrained that we would fail to rapidly adjust our utility curves or probability 733 

weighting to changing task conditions. In contrast, the flexibility requires mechanisms that can 734 

be adjusted to the task at hand; for example, different utility and probability weighting functions 735 

for different tasks. 736 

Neural mechanisms of flexibility in risk attitudes. A major goal of neuroeconomics has been 737 

to understand how our responses to uncertainty are determined by, presumably, specially 738 

dedicated neural mechanisms. It is often assumed that risk attitudes are stable and that the goal of 739 

neuroeconomics then is to understand how relevant neural operations lead to these preferences. 740 

Our work points to a different possibility: if preferences are not stable, then the neural processes 741 

that produce them may be similarly flexible. Indeed, our results suggest a somewhat different 742 

desideratum: that neuroeconomics ought to focus on how the brain regulates risk attitudes in 743 

response to context and adjusts them rapidly and adaptively when demands change. More 744 

broadly, and more speculatively, our findings suggest that risk attitudes may be seen as a 745 

consequence of general neural mechanisms that support rapid adjustment, presumably in 746 

contexts divorced from risk, rather than of a special and dedicated uncertainty module in the 747 

brain. Our results point to attentional modulation as a plausible mechanism (see below). All these 748 

results are relevant for future studies into neural mechanisms of value computations and how 749 

they are adjusted. 750 
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Standard approaches to modeling choice, especially in the neural domain, hold that different 751 

prospective outcomes of a single offer are weighted equally in evaluation (that is, after all, the 752 

normative strategy as well as the simpler one). It is surprising then that our results point to two 753 

types of differential weighting based on reward magnitude: a within-option weighting for 754 

outcomes within a risky option and an cross-option weighting for the two options. These findings 755 

can be explained by the idea that the weighting processes that determine value are biased by the 756 

greater attentional weight assigned to some prospects (typically the more salient outcomes, 757 

Hayden et al., 2008; Hayden and Platt, 2007; Ludvig et al., 2014; Shimojo et al., 2003; 758 

Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend, 2001). In the juice-gambling 759 

task in which there is only one non-zero outcome per gamble, competitive differential weighting 760 

occurs between the two gambles –perhaps via spatial attention. In the token-gambling task in 761 

which there could be two non-zero outcomes in each gamble, the competitive differential 762 

weighting occurs within a gamble –perhaps via feature-based attention. Even though models 763 

with a differential weighting mechanism only minimally improved the quality of fit in this task, 764 

the result of the comparison of fitting parameters indicates that this mechanism can account for 765 

part of the convexity of the utility function. Our results then illustrate how attentional 766 

mechanisms can influence economic decisions and make them more flexible. Empirically, 767 

modeling the influence of attention on evaluation is essential because some of the variance 768 

attributed to utility curves may actually reflect differential weighting instead. Traditional 769 

approaches that do not take this possibility into account may over-estimate the convexity of the 770 

utility function. 771 

Stable vs. constructed values and comparison with previous studies. One tradition in 772 

behavioral economics holds that preferences are constructed at the time of elicitation, and do not 773 

reveal stable values (Lichtenstein and Slovic, 2006). The set of computations involved in 774 

preference construction include not only a value function, but also editing, reference dependence, 775 

reweighting, and so on. Our results appear to be consistent with this view. These patterns are not 776 

likely to be restricted to the domain of risk; they are also consistent, for example, with an 777 

emerging body of work showing that preferences in the time domain are highly dependent on 778 

seemingly irrelevant contextual factors (Stephens and Anderson, 2001; Pearson, Hayden, and 779 

Platt, 2010; Blanchard and Hayden, 2015; reviewed in Hayden, 2016). Together, these results 780 
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suggest that both risky and temporal preferences are constructed in animals, and thus extend the 781 

concept of preference construction beyond humans.   782 

We have previously argued that, when playing fast repeated gambles for small amounts, 783 

monkeys are more likely to focus on the win than on the loss (Hayden and Platt, 2007; Hayden, 784 

Heilbronner, Platt, 2009), and that humans may do the same when confronted with those 785 

contexts (Hayden and Platt, 2009). Our results here provide three pieces of evidence for this 786 

argument. First, a convex utility curve that became steeper from losses to gains showed how 787 

larger wins were valued more. Second, we found a strong differential weighting based on reward 788 

magnitude across gambles in the juice-gambling task, indicating that, indeed, a larger win 789 

strongly influenced the behavior. Third, in the task with both gains and losses (token-gambling 790 

task), monkeys again differentially weighted possible outcomes of each gamble based on reward 791 

magnitude.   792 

One factor that could explain the shape of the probability weighting function is the difference 793 

between description and experience in communicating the properties of the gamble (Hertwig et 794 

al., 2004; Hertwig and Erev, 2009; Ludvig and Spetch, 2011). Humans, like our monkeys, 795 

exhibit S-shaped curves in experienced gambles. It may be that monkeys in our tasks treated the 796 

gambles as more experienced-like than described-like, especially in the juice-gambling task in 797 

which we used a much higher resolution for reward probability (0.02 vs. 0.2 in the juice vs. 798 

token task, respectively). Monkeys could trust a larger set of reward probabilities less and 799 

therefore rely more on experience to evaluate corresponding gambles. Reliance on experience is 800 

a useful strategy for tackling reward uncertainty (Farashahi et al., 2017). In a recent study 801 

showing an inverse-S-shape for probability distortion in monkeys, only six values of reward 802 

probability were used, which could have made the gambles act as more described (Stauffer et al., 803 

2016). Note also that, in that study, only one value for the reward magnitude was used in 804 

gambles. This limitation could result in degeneracy in fitting solutions, causing the inverse-S-805 

shaped probability weighting to absorb some the convexity of the utility function.   806 

Ultimately, these results serve as a testament to the cognitive flexibility and adaptiveness of 807 

rhesus monkeys, which are among the most successful primate species (Strier, 2016). Indeed, the 808 

success of the rhesus macaque is in part attributable to its ability to adjust to changing 809 



 

29 

environments, including an omnivorous diet and a willingness to live in a variety of climates, 810 

ranging from warm to cold as well as locations in both city and country. That is, regardless of the 811 

dietary richness of the environment in which they evolved, rhesus monkeys have thrived because 812 

they can adjust to new environments rapidly. Thus, in our view, it should not be surprising that 813 

they do not have a stable set of risk attitudes. It remains an open question how these ideas relate 814 

to species with narrower niches.   815 
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 953 

Figure 1.  Experimental procedure. (a) Timeline of the juice-gambling task. In each trial, two 954 

options were presented, each offering a gamble for juice reward. Gambles were represented by a 955 

rectangle, some portion of which was red, blue, or green, signifying no reward, medium, or large 956 

reward, respectively. The area of the colored portion indicates the probability that choosing that 957 

offer would yield the corresponding reward. We also used a safe offer that was entirely gray and 958 

always carried a 100% probability of a small reward. (b) Timeline of the token-gambling task 959 

with gains and losses. In each trial, two options were presented, each offering a gamble for 960 

tokens. The size of each colored portion within each offer indicated the probability that choosing 961 

that offer would yield the corresponding outcome. A small reward was administered for each 962 

completed trial. When at least six tokens were earned, a large “jackpot” reward was administered 963 

and the earned token count was reset to 0. The inset shows the colors associated with different 964 

tokens and combinations used. 965 

Figure 2. Alternative models for differential weighting. (a-c) Alternative differential 966 

weighting between the two outcomes of each gamble (within-option) in the token-gambling task 967 

with two non-zero reward outcomes. Panels (a-c) show three mechanisms for how magnitudes 968 

and probabilities of the two possible gamble outcomes can influence the weight of each gamble 969 

outcome on the overall gamble value: differential weighting (DW) by magnitude (a); differential 970 

weighting by probability (b); and differential weighting by EV (c). In all panels   and  971 

indicate the magnitude and probability associated with the left gamble’s larger magnitude 972 

outcome, respectively, and  is the magnitude of the other left gamble outcome (the probability 973 

of this outcome is ). The same convention is used for the right gamble. The blue box 974 

shows the outcome that is assigned with a larger weight based on a given mechanism. The DW 975 

factors determine the strength of differential weighting according to the reward magnitude 976 

(DWm), reward probability (DWp), and expected value (DWEV) of the two outcomes. (d-f) 977 

Alternative differential weighting between better outcomes of the two alternative gambles (cross-978 

option) in the token-gambling task with two non-zero reward outcomes. Panels (d-f) show three 979 

mechanism for how magnitudes and probabilities of the better outcome of the two alternative 980 

gambles can modulate their values: cross-option differential weighting by magnitude (d), cross-981 

option differential weighting by probability (e), and cross-option differential weighting by EV 982 
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(f). The blue box shows the gamble that is assigned with a larger weight based on a given 983 

mechanism. The DW factors determine the strength of differential weighting according to (d) the 984 

reward magnitude, (e) reward probability, and (f) expected value of the two gambles. (g-i) 985 

Alternative cross-option differential weighting between non-zero outcomes of the two alternative 986 

gambles in the juice-gambling task. Panels (g-i) show three mechanisms for how magnitudes and 987 

probabilities of the non-zero outcome of the two alternative gambles can modulate their values. 988 

Importantly, as shown in Figures 2-1 and 2-2, our fitting method is able to correctly identify the 989 

model used to generate a given set of data and thus can distinguish between the alternative 990 

models. 991 

Figure 3. Standard and non-standard evaluation of reward magnitude and probability 992 

according to prospect theory, and the overall sensitivity of monkeys’ choice behavior to the 993 

difference in expected values of gambles on each trial. (a) Utility function quantifying the 994 

relationship between reward magnitude and subjective utility. Plotted in blue is a hypothetical, 995 

standard utility function based on prospect theory with concave and convex curves for gains and 996 

losses, respectively. In contrast, the red curve shows a utility function that is convex for gains 997 

and losses, resulting in risk-seeking behavior for both gains and losses and thus violating the 998 

reflection effect. Parameters  and  are the exponents of the power law used to generate the 999 

utility curves for gain and loss domains, respectively. (b) Probability weighting function 1000 

quantifying the transformation of actual reward probability for making decisions. Plotted are 1001 

several possible shapes of probability weighting. Prospect theory predicts inverse-S-shaped 1002 

weighting functions (blue curves). Parameter  determines the curvature of the function. (c) 1003 

Psychometric functions in two monkeys during the juice-gambling task. Probability of choosing 1004 

the left target is plotted as a function of the difference in expected values of two gambles in a 1005 

given trial. The inset plots the probability (mean±s.e.m.) of choosing a sure option against a 1006 

gamble with an equal expected value (n = 32 trials), and the probability of choosing the less risky 1007 

option in pairs of gambles with equal expected values (n = 717 trials). (d) The same as in (c) but 1008 

for the token-gambling task. The top inset plots the probability of choosing the sure option of 1009 

one token against a gamble with an equal expected value (n = 69 trials), and the probability of 1010 

choosing the less risky option in pairs of gambles with equal expected values (n = 271 trials). 1011 

The bottom inset plots the probability of choosing the sure option with no reward over a 50/50 1012 

gamble of winning and losing one (n = 55 trials) or two tokens (n = 62 trials). 1013 
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Figure 4. Monkeys’ choices were sensitive to reward probability during both tasks. (a) 1014 

Plotted is the probability of choosing a gamble vs. sure option as a function of the probability of 1015 

the non-zero reward outcome (medium or large) of the gamble during the juice-gambling task. 1016 

Selection of the gamble increased monotonically as the probability of non-zero reward outcome 1017 

increased. (b) Each panel plots the probability of choosing a gamble with the non-zero reward 1018 

outcome indicated on the x-axis as a function of the reward probability of the non-zero outcome 1019 

of that gamble and the competing gamble (indicated on the y-axis) during the juice-gambling 1020 

task. (c) The same as in (b) for the token-gambling task. Each panel plots the probability of 1021 

choosing gamble 1 as a function of the reward probability of the larger magnitude outcome of 1022 

gamble 1 (x-axis) and gamble 2 (y-axis), for a set of gambles with a specific pairs of reward 1023 

magnitudes. As indicated in the inset, the outcome reward magnitudes of gamble 1 and gamble 2 1024 

are shown next to the x- and y-axis, respectively (gamble 1: (M1,P1; m1,1-P1 ), gamble 2: (M2,P2; 1025 

m2,1-P2 )). Overall, the probability of choosing a gamble increased as the probability of reward 1026 

for its larger magnitude outcome increased, indicating the sensitivity of monkeys to reward 1027 

probabilities provided by the length of different portions of each bar.  1028 

Figure 5. Monkeys’ sensitivity to reward information increased with more collected tokens 1029 

at the beginning of each trial. (a-b) Each plots shows the probability of choosing the left 1030 

gamble as a function of the difference in expected values of two gambles in a given trial, 1031 

separately for different numbers of collected tokens at the beginning of each trial (shown with 1032 

different colors) and for individual monkeys. The inset plots the estimated indifference point ( ) 1033 

and stochasticity in choice ( ) as a function of different numbers of collected tokens (Eq. 11). 1034 

One and two stars indicate that the slope of regression line is significantly different from zero at 1035 

p < .05 and p < .01, respectively (two-sided t-test). The stochasticity in choice decreased with 1036 

more collected tokens in both monkeys. 1037 

Figure 6. Fitting of choice behavior reveals a task-dependent pattern of risk attitude 1038 

different than what is predicted by prospect theory. (a) Comparison of the goodness-of-fit for 1039 

choice behavior during the juice-gambling task using four different models of subjective value 1040 

(EV: expected value; EV+PW: expected value with probability weighting function; EU: 1041 

expected utility; SU: subjective utility with nonlinear utility and probability weighting 1042 

functions). Plotted is the average negative log likelihood (-LL) per trial over all cross-validation 1043 

instances (a smaller value corresponds to a better fit). The SU model provided the best fit. (b) 1044 
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Estimated utility function based on the SU model as a function of the reward juice. Each curve 1045 

shows the result of the fit for one session of the experiment; the thick magenta curve is based on 1046 

the median of the fitting parameter. The dashed line is the unity line normalized by 100 L. The 1047 

insets show the distribution of estimated parameters for the utility curve for gains ( ). The 1048 

dashed lines show the medians and a star indicates that the median of the distribution is 1049 

significantly different from 1 (two-sided sign-test; p < 0.05). (c) Estimated probability weighting 1050 

function based on the SU model. The inset shows the distribution of estimated parameters for the 1051 

probability weighting function ( ). The dashed line is the unity line. Subjects exhibited a 1052 

pronounced S-shaped probability weighting function. Figure 6-1 shows consistent results for 1053 

fitting based on the EV+PW model. (d) Estimated utility function based on the EU model. 1054 

Conventions are the same as in (b). (e-h) The same as in (a-d), but for the token-gambling task. 1055 

The EU and SU models provided the best fits and subjects exhibited a slightly S-shaped 1056 

probability weighting function based on the SU model. The reward magnitude in this task 1057 

corresponds to the juice equivalent of a given number of tokens. The insets in (f) show the 1058 

distribution of estimated parameters for the utility curves in the gain ( ) and loss domains ( ), 1059 

as well as the loss-aversion coefficient ( ). On average, subjects exhibited a convex utility 1060 

function for both gains and losses and thus, were loss-seeking and violated the reflection effect. 1061 

Figure 7. Observed loss-seeking behavior was not due to a shift in the reference point. (a) 1062 

Comparison of the goodness-of-fit for choice behavior during the token-gambling task using four 1063 

different models of subjective value in which a loss of two and one tokens were considered as 1064 

zero loss or gain of one, respectively, due to the small ‘motivation’ reward (equivalent to two 1065 

tokens) provided in each trial. Conventions are the same as in Figure 6. Dashed line indicates the 1066 

average -LL for the best model that considers losing any token as a loss (correspond to the cyan 1067 

and magenta bars in Figure 6e). The EU model provided the best fit but its goodness-of-fit was 1068 

worse than the best model that considered losing any token as a loss. (b) Estimated utility 1069 

function based on the SU model as a function of the reward juice. Each curve shows the result of 1070 

the fit for one session of the experiment; the thick magenta curve is based on the median of the 1071 

fitting parameter. The dashed line is the unity line normalized by 100 L. The insets show the 1072 

distribution of estimated parameters for the utility curve for gains ( ). The dashed lines show 1073 

the medians and a star indicates that the median of the distribution is significantly different from 1074 



 

38 

1 (two-sided sign-test; p < 0.05). (c) Estimated probability weighting function based on the SU 1075 

model. The inset shows the distribution of estimated parameters for the probability weighting 1076 

function ( ). The dashed line is the unity line. 1077 

Figure 8. Different utility and probability weighting functions in the two tasks in individual 1078 

monkeys. (a) Estimated utility functions based on the SU model in the juice- and token-1079 

gambling tasks. Plot shows the utility curves based on the median of the fitting parameter in the 1080 

juice (pink) and token (magenta) gambling tasks for monkey B. The dashed line is the unity line 1081 

normalized by 100 L. The insets show the distributions of estimated parameters for the utility 1082 

curve for gains ( ) in the two tasks. The dashed lines show the medians, and a star indicates 1083 

that the medians of the two distributions are significantly different (two-sided Wilcoxon rank-1084 

sum test; p < 0.05). (b) Estimated probability weighting function based on the SU model in the 1085 

two tasks. Plot shows the probability weighting functions based on the median of the fitting 1086 

parameter in the two tasks for monkey B. The dashed line is the unity line. The insets show the 1087 

distribution of  values in the two tasks. (c-d) The same as in (a-b) but for monkey J. Both 1088 

monkey B and J exhibited a much steeper utility curve in the juice-gambling task. Although both 1089 

monkeys exhibited different probability distortion in the two tasks this effect was stronger in 1090 

monkey B. (e-f) The same as in (a-b) but for Monkey C that only performed the juice-gambling. 1091 

The overall behavior of Monkey C was similar to that of Monkey B in the juice-gambling task. 1092 

Figure 9. Differential weighting of gamble outcomes can account for part of the convexity 1093 

of the utility functions. (a) Comparison of the goodness-of-fit for choice behavior during the 1094 

juice-gambling task using four different models for the construction of reward value for each 1095 

possible outcome (convention the same as in Figure 6) and three different types of differential 1096 

weighting (DW) mechanisms (cross-opt: cross-option). Plotted is the average negative log 1097 

likelihood (-LL) per trial over all cross-validation instances (a smaller value corresponds to a 1098 

better fit). Overall, the SU model with cross-option DW by magnitude provided the best fit in the 1099 

juice-gambling task. Dashed line indicates the average -LL for the best model without DW. (b-c) 1100 

Distributions of the estimated parameters for the utility (b) and probability weighting function (c) 1101 

using the SU model with DW. The black dashed lines show the medians, and a black star 1102 

indicates that the median of a given distribution is significantly different than 1.0 in (b-c) and 0.5 1103 

in (d) (two-sided sign-test; p < 0.05). The blue dashed line shows the median of the best model 1104 
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without DW (the same medians as in Figure 6b-c). A blue star indicates that the estimated 1105 

parameter was significantly different between the best models with and without DW (two-sided 1106 

sign-rank test; p < 0.05). Differential weighting can account for part of the convexity of the 1107 

utility function since the model with this mechanism is less convex. (d) Distribution of estimated 1108 

DW factors using the SU model with DW. There was a significant DW in favor of the gamble 1109 

with the larger reward magnitude. (e-h) The same as in (a-d), but for the token-gambling task. 1110 

Overall, the EU and SU with within-option DW by magnitude models provided the best fit. 1111 

Moreover, all models with cross-option DW by magnitude were provided worse fits than 1112 

corresponding models with within-option DW.  1113 

Figure 10. Estimated utility and probability weighting functions for the SU model with 1114 

differential weighting by reward magnitude. (a-b) Estimated (a) utility and (b) probability 1115 

weighting functions based on the SU model with within-option differential weighting by 1116 

magnitude for the juice-gambling task. Each curve shows the result of the fit for one session of 1117 

the experiment, and the thick red curve is based on the median of the fitting parameter. For 1118 

comparison, the black curves show the utility (a) and probability weighting functions based on 1119 

the SU model without DW. The probability weighting curves are indistinguishable in the two 1120 

models. The dashed line is the unity line normalized by 100 L in (a), and the unity line in (b). 1121 

(c-d) The same as in (a-b) but for the token-gambling task using the SU model with cross-option 1122 

differential weighting. 1123 

Figure 11. Comparison of the estimated utility and probability weighting functions in the 1124 

juice- and token-gambling tasks based on the SU model with differential weighting. (a) 1125 

Estimated utility functions based on the best SU model with differential weighting in the juice- 1126 

and token-gambling tasks. Plot shows the utility curves based on the median of the fitting 1127 

parameter in the juice (pink) and token (magenta) gambling tasks. The dashed line is the unity 1128 

line normalized by 100 L. The insets show the distributions of estimated parameters for the 1129 

utility curve for gains ( ) in the two tasks. The dashed lines show the medians. There was a 1130 

small but significant difference between the two distributions (two-sided Wilcoxon rank-sum 1131 

test; p < 0.05). (b) Estimated probability weighting function based on the SU model with 1132 

differential weighting in the juice- and token-gambling tasks. Plot shows the probability 1133 

weighting functions based on the median of the fitting parameter in the two tasks. The dashed 1134 
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line is the unity line. Other conventions are the same as in panel (a). The star indicates that the 1135 

medians of the two distributions are significantly different (two-sided Wilcoxon rank-sum test; p 1136 

< 0.05). Correlations between estimated model parameters are plotted in Figures 11-1, 11-2, and 1137 

errors in the estimation of model parameters are shown in Figure 11-3. 1138 

Figure 12. Differential weighting of possible outcomes enhances the overall effect of 1139 

magnitude on choice. (a-b) Distribution of estimated values of stochasticity in choice ( ) during 1140 

the juice-gambling task (a) and the token-gambling task (b). The SU models with and without 1141 

DW are shown in blue and black, respectively. The dashed lines show medians, and a blue star 1142 

indicates that the medians of two distributions are significantly different from each other (two-1143 

sided sign-test; p < 0.05). The stochasticity in choice was significantly smaller in the SU with 1144 

DW model. (c) Distributions of  values for small, medium, and larger rewards during the 1145 

juice-gambling task. (d-e) Distribution of  values for loss tokens (d) and  values 1146 

for gain tokens (e) during the token-gambling task. In all cases, the  values were 1147 

significantly larger in the SU with DW model indicating that differential weighting of possible 1148 

outcomes based on the magnitude increases the overall effect of magnitude on choice. 1149 

Figure 2-1. Fitting procedure is able to identify the model used for simulating data 1150 

correctly. (a) Plot shows the goodness-of-fit (in terms of the average AIC over a set parameters) 1151 

for fitting choice data generated with a given model and fit with the same or different models 1152 

(total 16 models) for the juice-gambling task. The models used to generate and fit data are 1153 

indicated on the x- and y-axis, respectively. (b) The same as in (a), but the AIC values for data 1154 

generated with a given model (each column) are rescaled by first subtracting the minimum AIC 1155 

value obtained by fitting a given set of data and then dividing the outcome by the difference 1156 

between the maximum and minimum values of AIC for that set of data. As a result, rescaled AIC 1157 

values for each set of simulated data fall between 0 and 1. (c-d) The same as in (a-b) but for the 1158 

token-gambling task. Overall, the same model used to generate a given set of data provided the 1159 

best overall fit.  1160 

Figure 2-2. Fitting procedure is able to estimate model parameters accurately and with 1161 

relatively small error. (a) Plotted is the average relative estimation error (i.e. the difference 1162 

between the estimated and actual parameter values divided by the actual value) in fitting choice 1163 

data generated with a given model and fit with the same or different models (total 16 models) for 1164 
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the juice-gambling task. The fit using the same model used to generate a given set of data 1165 

provided unbiased estimates of model parameters. (b) Plotted is average of the absolute value of 1166 

relative estimation error (as a more robust measure of variance in estimation error) in fitting 1167 

choice data generated with a given model and fit with the same or different models. The variance 1168 

in estimated parameters was the minimum for fit using the same model used to generate a given 1169 

set of data. (c-d) The same as in (a-b) but for the token-gambling task. 1170 

Figure 6-1. Estimated utility and probability weighting functions based on the EV+PW 1171 

model. (a) Estimated probability weighting function based on the EV+PW model for the juice-1172 

gambling task. Each curve shows the result of the fit for one session of the experiment and the 1173 

thick green curve is based on the median of the fitting parameter. The dashed line is the unity 1174 

line. The inset shows the distribution of estimated parameters for the probability weighting 1175 

function ( ). The dashed lines show the medians, and a star indicates that the median of the 1176 

distribution is significantly different from 1 (two-sided sign-test; p < 0.05). (b) The same as in 1177 

(a) but for the token-gambling task. 1178 

Figure 11-1. Correlation between model parameters using the inverse of the Hessian 1179 

matrix. The matrix of correlation coefficients between a given model parameters is calculated 1180 

from the inverse of the Hessian matrix. (a-b) Color of each square indicates the correlation 1181 

coefficient between each pair of parameters for the SU (a) and the SU with DW models (b) 1182 

during the juice-gambling task. Correlation coefficients are reported for values larger than 0.1 or 1183 

smaller than -0.1 only. (c-d) The same as in (a-b) but for the token-gambling task. 1184 

Figure 11-2. Correlation between model parameters using session-by-session estimates. For 1185 

each model and between the pair of models, the matrix of correlation coefficients between model 1186 

parameters is calculated using estimated model parameters in each session. (a-c) Color of each 1187 

square indicates the correlation coefficient between each pair of parameters of the SU model (a), 1188 

the SU with DW models (b), and between the parameters of the two models (c) during the juice-1189 

gambling task. Correlation coefficients are only reported for statistically significant values (p < 1190 

.05, using Bonferroni correction to adjust critical p-value in each panel). (d-f) The same as in (a-1191 

c) but for the token-gambling task. 1192 

Figure 11-3.  Error in the values of estimated parameters in the best models with and 1193 

without differential weighting. (a) The left column shows the minimum eigenvalue and the 1194 
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corresponding eigenvector for the SU model in the juice-gambling task. The right column shows 1195 

the estimated percent error for each model parameter. (b) The same as in (a) but for the SU 1196 

model with differential weighting. (c-d) The same as in (a-b) but for the token-gambling task.  1197 

Table 1. Summary of the estimated risk preference parameters during the juice-gambling task. 1198 

Reported are medians (±IQR) of the distribution of estimated parameters in a given model.  1199 

Table 2. Summary of the estimated risk preference parameters during the token-gambling task. 1200 

Reported are medians (±IQR) of the distribution of estimated parameters in a given model.  1201 

 1202 
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Summary of the estimated risk preference parameters during the juice-gambling task. 
 

 
SU with cross-opt. DW 

by mag. 
SU EU EV+PW 

 1.74±1.00 2.95±0.94 2.57±0.57 N/A 

 1.55±0.78 1.57±0.76 N/A 2.50 ±1.68 

Table 1. 
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Summary of the estimated risk preference parameters during the token-gambling task. 
 

 
  SU with within-opt. 

DW by mag. 
SU EU EV+PW EV 

 1.43±0.46 1.58±0.51 1.49±0.49 N/A N/A 

  0.48±0.73 0.64±1.02 0.55±1.05 N/A N/A 

 0.58±1.51 0.46±0.84 0.46±0.84 N/A 
 

0.13±0.17 

  1.11±0.4 1.14±0.37 N/A 1.48±0.58 N/A 

Table 2. 


